

Cobalt-Free Cathodes for Next Generation Lithium-Ion Batteries

Neil J. Kidner Principal Investigator

Nexceris, LLC

June 11th 2019

Project ID: BAT417

Timeline

Project Start Date: 01/01/2019

Project End Date: 12/31/2021

Percent Complete: 10 %

Budget

Total Project Funding: \$3.08 M

▶ DOE share: \$2.46 M

Funding for FY2019: \$1.04 M

▶ DOE share: \$805k

Funding for FY2020

▶ DOE share: \$818k

Barrier and Technical Targets

Barriers addressed:

▶ Cycle Life: 1000 cycles C/3 deep discharge with < 20 % energy fade

▶ Cost: < \$100/kWh

Partners

- Ohio State University: Jung-Hyun Kim
 - Battery testing
 - ▶ Cell chemistry development
- Navitas Systems Michael Wixom
 - Large-scale electrode fabrication
 - 2-Ahr battery manufacture and testing

Impact

- ▶ Renewed interest in reduced or cobalt free Li-ion battery cathode formulations
- Innovate high-voltage Li-Ion batteries by producing an effective kinetic barrier that can act as a cathode SEI layer and enhance battery stability

Project Objectives

- Demonstrate lithium manganese nickel titanium oxide (LNMTO) as a high performance and cobalt-free Li-ion battery cathode material
 - Maintain high specific performance associated with LNMO
 - ▶ Enhance cycle life to achieve > 1000 cycles
 - Identify low-cost, scalable manufacturing process for LNMTO cathode powder

Objectives Budget Period FY19

- Down-select solid-state synthesis process for manufacture of high-voltage spinels
- Demonstrate applicability of LNMTO based cathodes through 2-Ahr testing

Approach/Strategy - Milestones

	FY 2019		FY 2020					
Milestone/Decision Point	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1 st iteration of solid-state LNMTO powder delivered	♦							
Decision-Point: Down-selection of solid-state synthesis process Compositional homogeneity and coin-cell performance		♦						
Down-selection of co-precipitation LNMO process				♦				
Decision Point: PPC chemistry, fabrication/conditioning process defined			♦					
2-Ahr PPCs fabricated and delivered to DOE 20 PPCs fabricated, 15 delivered to DOE 15 completed performance testing				♦				
Go/No-Go Decision Point: Performance testing of PPCs completed Achieve meaningful improvement over current LNMO, equivalent to LMNTO				*	 Greater than 200 cycles wi 20 % energy fade (C/3, 25 ° Specific energy > 650 Wh/g 			
PPC post-mortem analysis completed					\rightarrow			
Decision Points: Candidate core-shell LNMTO powders down-selected						♦		
Promising cell chemistries down-selected							♦	
Go/No-Go Decision Point: Testing of 2-Ahr cells completed Demonstrate that core/shell modification enhances cathode performance	 Cycle life > 500 cycles with 20 % energy fade (C/3, 25 °C) Specific energy > 650 Wh/g 							

Develop cobalt-free cathode based on high-voltage LiNi_{0.5}Mn_{1.5}O₄ (LNMTO)

- Improve cycle and calendar life of high-voltage spinel cathodes by forming a solidelectrolyte interface that effectively passivates the cathode surface
- Microstructural enhancement of the LNMTO powder to create novel core/shell structures where titanium is preferentially located at the surface
- Incorporate optimized binder/electrolyte chemistries to address degradation

Technical Progress: Solid-State Processing

Successfully manufactured LNMTO cathode powder using solid-state synthesis

Synthesized high voltage spinel cathode materials using solid-state process

- Baseline LNMO
- Process iterations have shown steady performance improvement for LNMTO

Identified key process parameters

- Integrated new mixing process
- Optimized calcination profile
- Evaluated post-fire annealing process

Established baseline manufacturing/cost model

Technical Progress: Preliminary Cell Testing

<u>Demonstrated cell performance of LNMO and LNMTO solid-state spinel powders</u>

Collaboration and Coordination with Other Institutions

Collaboration	Role		
THE OHIO STATE UNIVERSITY	 Sub-contractor, University Coin-cell and single-layer pouch cell screening of cathode materials Cell chemistry (additives/binder) development Analytical characterization of cathode materials and electrodes 		
SYSTEMS	Sub-contractor, Industry O Electrode scale-up O Large format 2-Ahr battery fabrication and testing		

Nexceris is working to identify additional opportunities to collaborate both within and outside of this project

Partners for high volume manufacturing

Proposed Future Research (FY2019 and FY2020)

Ongoing Work FY 2019

Future Work	Justification	Key challenges
Complete down-selection of solid state LNMTO synthesis process and cell chemistry Q2 and Q3 milestones	 Identification of optimal LNMTO powder & complimentary cell chemistry for PPCs 	 Complete process development in time Risk mitigation for large 2-Ahr battery fabrication and testing
Fabrication & performance testing 2-Ahr cells Q4 milestone and FY2019 Go/No-Go DP	Demonstrate technology applicabilityFY2019 deliverable	Compressed timelineCoordination of testing protocol
Develop LNMO co-precipitation process <i>Q4 milestone</i>	 Required for core/shell development in FY2020 	o Homogeneity of LNMO powder

Proposed Future Work FY 2020

Future Work	Justification	Key challenges
Post Mortem analysis of PPCs Characterize surface of aged electrodes	 Identify opportunities to improve cell performance (cathode powder and/or cell chemistry) 	 Ensure primary degradation mechanisms are addressed, and mitigation strategies incorporated into work-plan
LNMTO core/shell microstructure development LNMO core with TI-enriched surface	 Increase cycle-life w/o degrading capacity Establish strong IP position Pathway to achieve Y2 Go/No-Go DP 	Efficient screening of candidate processesUniformity of Ti-enriched surface layer
Tailoring of cell chemistries for high V cathode Stabilization of electrode/electrolyte interfaces	 Critical to implement to achieve required cell stability and cycle life 	 Identification and validation of cell chemistries for high V cathodes

Accomplishments:

- Developed solid-state synthesis process for high-voltage spinel cathodes
- Solid-state LNMO and LMNTO powder successfully synthesized and tested
 - ▶ LNMO: Ti-free LiNi_{0.5}Mn_{1.5}O₄ (LNMO) has been successfully produced at pilot scale with ~ 130 mAh/g initial discharge capacity and 97.7% capacity retention @ 35th cycle (C/5-Ch & C/2-Dis at RT)
 - ▶ LNMTO: Ti-substituted LiNi_{0.5}Mn_{1.2}Ti_{0.3}O₄ has been developing at pilot scale and showed performance improvement: from 105 to 115 mAh/g initial discharge capacity

Next steps:

- Complete down-selection of solid-state process and cell chemistry
- Risk mitigation and preparation for successful manufacture and testing of PPCs

Technical Back-Up Slides

Cathode Powder Screening Protocol

Battery Cell Testing (2032 stainless coin-cell)

- Positive Electrode: LNMTO active metal (85 wt.%) + Super P (7.5 wt.%) + PVdF (7.5 wt.%)
- Negative Electrode: Li-metal
- Separator: Polypropylene (Celgard 2500, 25 μm-thickness)
- Electrolyte: 1 M LiPF6 in 1:1 EC/EMC (Sigma-Aldrich)

Tested with Arbin LBT cycler at RT

Effect of post-process anneal

1-2 hour anneal improves LNMTO performance

